
Volume 6- Number 2- Spring 2014 (29-40)

ITRC

Automatic Test Case Generation for Modern
Web Applications Using Population-Based

Automatic Fuzzy Neural Network

Mohammad Reza Keyvapour
Computer Engineering Department

Alzahra University
Tehran, Iran

keyvanpour@alzahra.ac.ir

Hajar Homayouni
Computer Engineering Department

Alzahra University
Tehran, Iran

Homayouni.hajar@student.alzahra.ac.ir

Received: November 9, 2013- Accepted: February 8, 2014

Abstract—Automatic test case generation is an approach to decrease cost and time in software testing. Although there
have been lots of proposed methods for automatic test case generation of web applications, there still exists some
challenges which needs more researches. The most important problem in this area is the lack of a complete descriptive
model which indicates the whole behaviors of web application as guidance for the generation of test cases with high
software coverage. In this paper, test cases are generated automatically to test web applications using a machine
learning method. The proposed method called RTCGW (Rule-based Test Case Generator for Web Applications)
generates test cases based on a set of fuzzy rules that try to indicate the whole software behaviors to reach to a high
level of software coverage. For this purpose a novel machine learning approach based on fuzzy neural networks is
proposed to extract fuzzy rules from a set of data and then used to generate a set of fuzzy rules representing software
behaviors. The fuzzy rule set is then used to generate software test cases and the generated test cases are optimized
using an optimization algorithm based on combination of genetic and simulated annealing algorithms. Two
benchmark problems are tested using the optimized test cases. The results show a high level of coverage and
performance for the proposed method in comparison with other methods.

Keywords- Automatic Test case generation; web applications; population-based Fuzzy Neural Network

I. INTRODUCTION
Using web is one of the most important,

unavoidable, and advantageous ways for business,
learning and information gathering. As web
progresses, web applications are becoming more
popular than desktop applications. Therefore, their
quality verifications are of a higher importance. An
efficient way for software verification is software
testing which is applied during software development
cycle repeatedly hence it is a costly process. An
essential and costly step in software testing is test case

generation [1]. An efficient test suite should be able to
cover different features of software. Test case
generation automation can effectively reduce the time
and costs consumed for the whole software testing
process. Although there have been lots of researches to
produce test cases with high software coverage
capability [2], there still exists challenges in this area
especially for web applications with their particular
properties. One of the most important problems is not
presenting an all-around model which can be able to
illustrate all web application features for generating
test cases. Existing methods generate test cases based

40 Volume 6- Number 2- Spring 201430

on an incomplete model that lead to sets of test cases
with a low level of software coverage. Accordingly, in
this paper, a new learning method based on fuzzy
neural networks [3] is presented to extract the web
application behaviors as a fuzzy rule set, and then uses
this rule set as a model for web application to generate
test cases with high code coverage. The generated test
cases are then optimized using an algorithm composed
of genetic and simulated annealing. The optimized test
cases are applied on two benchmark web applications
called TUDUList and BlindTextGenerator and
compared with other approaches. The evaluations
show a higher performance, coverage and automation
for the proposed method.

II. RELATED WORKS
Web applications have been evolved through last

decade to satisfy requirements of different users. Its
evolution process started from a simple static page-
sequence client/server system into a dynamic medium
of user-created content and rich interaction. The
complete evolution steps are discussed in [4]. Modern
web applications (web 2.0 applications) as dynamic
medium of user-created content and rich interaction
rely on asynchronous client/server communication.
Rich Internet Applications are usually developed using
Web 2.0 technologies, such as Ajax, Silverlight, or
Flex [5]. Among the technologies that are being
developed to implement its features, Ajax1 is one of
the most promising and mature. Ajax Web
applications are heavily based on asynchronous
messages and DOM manipulation. Accordingly the
faults associated with these two features are relatively
more common than in other kinds of applications.
Thus, most Ajax testing techniques are directed toward
revealing faults related to incorrect manipulation of the
DOM [6]. For these applications, test cases are
sequences of events that are potentially fault prone [7].
The testing techniques applied to traditional multipage
web applications are not sufficient for testing modern
single page web applications. In more detail, the
properties of Ajax make them extremely difficult to
test. Static analysis techniques are not able to reveal
many of the dynamic dependencies present in modern
web applications. The highly dynamic nature of Ajax
user interfaces and their client/server delta
communication adds an extra level of complexity to
the traditional web analysis and testing challenges [4].
Furthermore, traditional web testing techniques are
based on the traditional page request/response model
and not taking into account client side functionality
[8]. In [9] the adequacy and effectiveness of the most
famous web testing methods are applied to these
modern web applications and results shows that they
are inadequate for testing AJAX-based web
applications. An all-around classification framework
for both traditional and modern web application test
case generation techniques is presented in [10]. To
bridge the gap between current web testing techniques
and the main new features provided by AJAX, [9]
proposed a Model-based testing technique represented
by a FSM to describe the behavior of an AJAX Web
page, according to its DOM structure and content in
which nodes represent DOM states and edges are

1 Asynchronous Javascript And XML

events which modify the DOM. To extract the FSM
model of a web application, different methods have
been proposed using execution traces [6], crawlers
[11, 12] or user sessions [5]. WebMate [13] as a
technique for generating test case for popular web 2
applications like social networks uses an initialized
finite state automaton to generate test cases and tries to
visit all states of the so-called usage model. The
proposed mechanism in [14] makes use of a crawler to
capture the client side fields and create a state-flow
which is a basis for the completion of automatic
testing. These techniques can automatically generate
many test cases, whose effectiveness depends on the
completeness of the initial model. When the initial
model is obtained by stimulating the application under
test with a simple sampling strategy that uses a subset
of GUI actions to navigate and analyze the DOM, the
derived model is partial and incomplete, and the
generated test cases necessarily overlook the many
interactions not discovered in the initial phase.

III. PROPOSED METHOD
Existing methods to test previous web applications
are not applicable for testing the new generation of
web applications which are based on web2
technology [9]. In other words, special features of
these applications make their testing process much
harder. Static analysis cannot discover the dynamic
communications of these applications. On the other
hand, their dynamic nature and particular client/server
communications in these applications make them
more complicated and cause new challenges for their
test [4]. Moreover, the classical testing techniques
were based on a request/response model between
pages and didn’t consider the functionality of client
side [12]. Due to the fact that new web applications
are based on asynchronies messages and DOM
manipulations, errors related to these two features are
more common. Therefore, most of techniques in this
area consider detecting of errors caused by DOM
manipulations directly [6]. Hereupon in this research
test cases are generated using DOM. In other words,
test cases are introduced as a sequence of events that
change the DOM structure. Existing test case
generation method for web2 applications are based on
an incomplete model of application which is mostly
described as a finite state graph that doesn’t represent
all software behaviors. Accordingly, the proposed
method in this paper tries to first extract a complete
model of web application and then generate test cases
based on this model. To extract the web application
model, a new neural network called PAFuNN is
presented. This model is utilized for generating web
applications test cases.
Figure 1 shows the overall architecture of Rule-based
Test Case Generation for Web Applications
(RTCGW). To extract DOM structure there is a need
for client-side code of web application. Thus, in
RTCGW, client-side code is defined as input and a
test suite (a set of test cases) is defined as output.

40Volume 6- Number 2- Spring 2014 31

Fig. 1 The overall architecture of proposed method

According to figure 2 automatic test case
generation system is composed of two subsystems.
The first subsystem is responsible for generating an
overall fuzzy rule set model of web application by
dynamic analysis of software and the second one
generates test cases based on his model.

Fig. 2 The block diagram of RTCGW

3-1- Model construction subsystem
Due to the high complexity of modern web

applications, accessing to all states are almost
impossible [15]. On the other hand, the main goal in
software testing is to verify all possible states of
software. In recent researches [6, 15, 16] the web
applications are modeled using a finite state graph in
which nodes represent software states and edges
illustrate the factors which cause a transition between
states (like events, links, …). Most of the time this
graph is generated according to some execution traces
which lead to incomplete and inefficient model.
Consequently, the generated test cases are also
incomplete and don’t cover all testing purposes.
Accordingly, in this research a set of fuzzy rules is
used to predict all application behaviors and states
according to its current state. Therefore, the first goal
of this paper is to generate a fuzzy rule set that model
all application’s states. The block diagram for this
system is illustrated in figure 3.

Fig. 3 Model construction block diagram

This subsystem has two components. In the first
component, a random walk is applied in different
states of web application to generate training data of
PAFuNN. For this purpose, the client-side code of
application is analyzed and different events are
executed randomly. Information such as hash code of
current state, events and input data, and hash code of
next state are stored a vector and sent to the next
component to generate fuzzy rule set from.

3-1-1- first component: random walk on system under
test

The main purpose of this component is to generate
input data for the next component. As mentioned

before, due to the different nature of modern web
applications, their navigation is different from moving
between pages, but means moving from one DOM
state to another. As a result, to crawl through different
states of a modern web application, we need to execute
it to see the changes in DOM states dynamically. To
proceed, the method proposed by Ali Mesbah is used
[12]. In this method a database is used to initialize the
input elements of DOM [6]. Generally speaking, the
processes needed for random walk on web application
consists of: 1) DOM extraction from client-side code,
2) DOM analysis to select executable and clickable
elements randomly. Table 1 shows some examples of
executable elements and their events.

TABLE 1. EXECUTABLE ELEMENTS AND THEIR EVENTS

Event Component
Onclick Button
Onclick, onMouseOver Image
On key press Textarea
Onselect, onclick checkbox
Onclick Link
Onselect Radio

3) Executing selected elements, and fill the input
values by data in database. This leads to a change in
DOM state. 4) Calculating hash code of current and
next states as an indicator for each state. 5)
Initializing input-output vector as table 2 shows.

TABLE 2. INPUT-OUTPUT VECTOR RESULTED FROM

RANDOM WALK ON WEB APPLICATION

Output Input

N
ext D

O
M

 State hash
code

C
urrent D

O
M

 State hash
code

C
urrent D

O
M

 State Index

Input data Types

E
vent Types

E
lem

ent T
ypes

Table 3 shows different types of input, events and
elements with a code related to each one to be stored
in the input-output vector. As an example, table 4
shows that if the state of DOM is 1 and we click on a
link we go to state 7.

TABLE 3- CODES RELATED TO ELEMENTS, INPUTS AND
EVENTS

co
de

In
pu

t
da

ta

C
od

e

E
ve

nt

T
yp

es

co
de

E
le

m
en

t
 T

yp
es

00 String 00 click 000 button
01 Numeral 01 MouseOver 001 image
10 Both 10 keypress 010 Textarea
11 Non 11 select 011 checkbox

 100 Link

 101 Radio

40 Volume 6- Number 2- Spring 201432

TABLE 4- AN EXAMPLE FOR INPUT-OUTPUT VECTORS

N
ext D

O
M

State hash

code

C
urrent

D
O

M
 State

hash code

C
urrent

D
O

M
 State

Index

Input data
T

ypes

E
vent Types

E
lem

ent
T

ypes

7 10 1 11 00 100

3-1-2- second component: Fuzzy rule set generation
In this component a set of fuzzy rule set representing
software states is generated. In next step, this set is
utilized to predict different states of web application
and consequently to generate test cases with high
coverage capability. The (X, Y) input-output vector
generated from previous component is now used to
train PAFuNN and to generate a set of fuzzy rules.

 PAFuNN for extracting fuzzy rule set

In this part free from the paper goal, a novel method
is presented generally for extracting fuzzy rules from
a set of data. Population-based Automatic Fuzzy
Neural Network is a five layer neural network like
Evolving Fuzzy Neural Network (EFuNN) [17]
which is appropriate for online knowledge discovery
from large databases.
EFuNN has a five-layer structure including the rule
layer, the condition-to-rule connection layer and the
rule-to-action connection layer beside input and
output layers.
 The first layer of EFuNN is the input layer and the
second layer represents fuzzy quantization for the
input variables. The third layer (rule layer) evolves
through supervised/unsupervised learning. There are
two vector connection weights for each rule node r –
W1(r) and W2(r). W1(r) is adjusted through
unsupervised learning based on similarity measure
within a local area of the problem space. W2(r) is
adjusted through supervised learning based on the
output error. The fourth layer represents fuzzy
quantization for the output, and the fifth layer
represents the real values for the output variables.
Each rule node rj represents an association between a
hyper sphere of fuzzy input space and that of fuzzy
output space. Rj is the radius of the input hyper sphere
of a rule node rj which is defined as Rj=1-Sj, where Sj
is the sensitivity threshold parameter and it defines
the minimum activation of rule node rj to a new
example (x,y) in order the example to be considered
for association with this rule node. Two conditions
should be satisfied in order the pair of fuzzy input-
output data vectors (Xf,Yf) to be allocated to the rule
node rj: (1) a local normalized fuzzy difference
between Xf and W1(rj) is smaller than radius rj, (2) the
normalized output error is smaller than an error
threshold.
As a new sample is presented to the network, it is first
fuzzified at the fuzzy input layer. The fuzzy distance
between the fuzzified input and the connections
weights W1 is then calculated as follows in order to
determine whether the input example falls into input
receptive field of some specific rule node or not.

The rue node with the highest activation (Eq.2) or in
other words with the lowest FD value is selected.

If the activation value of selected rule node is less
than the sensitivity threshold, a new rule node is
created and new connections weights are established
for it as follows.

Otherwise W1 is adjusted through unsupervised
learning based on similarity between the fuzzy input
and the previous connection weights for the jth rule
node.

Where ɳj is the learning rate of the jth rule node
which can be defined as

Where ACCj is the accumulated number of
accommodated examples for the jth rule node.
The output of fuzzy output layer A2 is computed via
Eq.6

Where satlin() is the saturating linear transfer
function.
If the fuzzy output error is larger than a pre-defined
threshold value a new rule node will be created
similarly.

Otherwise W2 is updated according to the Widrow-
Hoff Least Mean Square (LMS) algorithm in a
supervised manner.

Finally output value Yc can be derived by Eq.9

The proposed PAFuNN has the advantageous of
EFuNN. However, this method tries to overcome

40Volume 6- Number 2- Spring 2014 33

some existing challenges in EFuNNs. The most
important challenges are:
 Lack of control on the number of rule nodes:

EFuNN decides to add new neurons only based on
the current input sample which leads to :
o A high number of neurons in network which
causes high level of complexity, so that some
existing approaches like pruning or integrating
nodes cannot be enough to optimize network
architecture.
o Rule insertion is based on a local view

depending only on one example each time.
 Updating thresholds: sensitivity and error

thresholds have effective roles in the functionality
of network which are set to constant values in
basic EFuNN. Improvement of these parameters
during network learning can have a deep impact
on the performance of network.

a) Control on number of neurons
In PAFuNN after some epochs, when a particular
number of neurons are generated, if an input sample
doesn’t match with any of existing neurons (i.e. the
two EFuNN conditions aren’t satisfied for that input
[14]), it is stored and finally neurons are generated
based on a population of rejected stored examples.
Otherwise, network parameters are updated in a
supervised/unsupervised manner as same as EFuNNs.
The stored examples are first sorted according to their
fuzzy distance (Eq. (10)).

Next, the sorted samples are classified to different
subsets according to the sensitivity threshold why this
threshold shows the radius of a neuron sphere.
Finally, for each subset a neuron is inserted into the
rule layer of network and its parameters are adjusted
as same as EFuNN method.

b) Updating thresholds
In proposed method, two learning automata with fixed
structures are utilized to adjust two network
thresholds based on network response to each input
sample. A learning automaton is decision maker
which is placed in a random environment and choose
the optimum activity by repeated interactions with its
environment and based on the environment responses
[18].

Two fixed structured learning automata (FSLA)
are connected to rule layer and output layer of
network to adjust sensitivity and error thresholds for
those layers. It should be noted that PAFuNN is the
environment for learning automata. The automata
activities are choosing best values for thresholds. The
environment response is an award to first automata if
the activity value of selected rule node (the rule node
with the highest activity) is more than sensitivity
threshold, and the environment response is an award
to second automata if fuzzy output error is less than
error threshold. Figure 4 shows the internal
connection of PAFuNN and FSLA.

Fig. 4 Internal connection of learning automaton to PAFuNN

3-2- Test case generation subsystem
In this subsystem, test cases are generated using

fuzzy rule set model without a need for executing web
application. The main goal of this part is to generate
test cases with high level of software coverage.
According to the state explosion problem, there is a
need for optimizing the generated test cases. Figure 5
shows the block diagram of test case generation
subsystem.

Fig. 5 test case generation subsystem block diagram

3-2-1- First component: initializing test suite
In this step test cases are initialized using a semi-
random approach. Each test suite has at last k test
cases. Each test case is a input-output vector like the
one illustrated in table 5 in which software is in state
a and do some action with x features and go to state b.

TABLE 5- THE STRUCTURE OF ONE TEST CASE

Next
DOM
state

Current
DOM
state

Input
data

Event
Types

Element
 Types

b A X

A test suite is defined as a matrix with first state equal
to the first state of application. An example of a test
suite with 7 test cases is illustrated in figure 6 (a).
Figure 6 (b) shows the state transitions for the test
suite. In the semi-random approach, the current state
of first test case of a test suite is set to the first state of
the web application. Other elements of test case are
initialized randomly. The next state of the test case is
predicted by PAFuNN. For the second test case of the
test suite the current state is set to the predicted value
by PAFuNN and other elements are initialized
randomly. These approaches are applied till all k test
cases of a test suite are initialized. The process
continues to fulfill N test suites semi-randomly.

Input
data

Event
Types

Element
 Types

Current state Next state

100 00 11 0 1
010 01 11 1 0
001 11 00 0 2
101 10 11 2 3
000 00 01 3 4
010 10 10 4 1
000 11 11 1 0

(a)

PAFuNN

LA
β(n

Value of
parameter

being adjusted

Response of
Neural Network

α(n
)

40 Volume 6- Number 2- Spring 201434

(b)

Fig. 6 (a) Example of a test suite, (b) State transition for the test suit

3-2-2- Second component: Test suite optimization

The main goal of this component is to optimize test
suites to achieve a test suit with a high level of
coverage and performance. For this purpose various
algorithms such as genetic, Memetic, simulated
annealing and the combination of genetic and
simulated annealing (GA+SA) is used to find the most
effective one. In the proposed GA+SA algorithm, in
each generation of genetic algorithm the solution is
optimized using simulated annealing in two different
ways: 1- in each generation of GA the solution with
highest amount for fitness is optimized by SA, 2- in
each generations the selected parents are optimized by
SA after imposing GA operations.
Furthermore, the fitness function and operators of GA
are as follows:
Fitness function: this function calculates the average
of coverage related to test cases of a test suite. In this
research the number of different states in a test suite is
considered as the coverage criteria for that test suite.
The more is the number of different states in a test
suite, the more coverage it causes.

GA operators: 1- selection: the chromosomes (i.e. test
suites) are selected using roulette wheel in which
solutions with higher fitness value have a higher
chance for being selected. 2- crossover: two different
crossovers are used in this research i.e. horizontal and
vertical that incorporates chromosomes horizontally
or vertically. It should be noted that PAFuNN is used
for indicating the next state of test cases after each
crossover.

IV. EVALUATIONS
First the web applications to be evaluated are
introduce and the evaluation criteria are indicated.
Finally the results of applying proposed method for
test case generation of web applications are illustrated
and compared with other existing methods.

4-1- Web applications to be tested
Existing test case generation methods apply their
method on benchmark problems i.e. famous web
applications on this area [19, 20, 21]. For this
purpose, web applications are run using generated test
cases and the resulted coverage is analyzed and
compared with results obtained from other methods.
In this paper two benchmark web applications are
chosen as follows to apply test cases and compare
results.

 TUDULis 2 web application: Our first
experimental subject is the Ajax-based open
source TUDU web application for managing
personal todo lists, which has also been used by
other researchers [6, 12, 15]. The server-side is
based on J2EE and consists of around 12K lines of
Java/JSP code, of which around 3K forms the
presentation layer we are interested in. The client-
side extends on a number of Ajax libraries such as
DWR and Scriptaculous, and consists of around
11k LOC of external JavaScript libraries and 580
internal LOC.

 Blind Text Generator3 web application: the second
experiment is an Ajax-based software which helps
you create dummy text for all your layout needs,
which has also been used by other researchers [12,
16]. Dummy text is useful for publication industry
or web designers to be fulfilled by real text. It is
especially useful when the real data is not
accessible. Due to the fact that the number of
states is high in this application, it is a good choice
for our evaluations.

4-2- Evaluation Technique
To evaluate proposed method, the same technique in
[15] is utilize. In this technique, the software under
test is run using generated test cases. During this
process all evaluation criteria are calculated. This is
important to note that the input elements of a DOM is
initialized randomly from a prepared database same
as [12].

4-3- Evaluation Criteria
There have been various criteria to evaluate test cases
generated for web applications. In a general view, we
categorize the evaluation criteria into three general
classes.
1) Performance: to calculate the performance of test
suite different objects should be taken into
consideration [22, 23] such as:

 DOM string size:

 Number of candidate elements executed during
testing phase:

 Number of detected states during test phase:

Accordingly the performance is calculated as:

2 http://tudu.sourceforge.net
3 www.blindtextgenerator.com

40Volume 6- Number 2- Spring 2014 35

2) Automation level: This is analyzed by calculating
manual and automatic efforts in terms of time for test
case generation. To illustrate, time consumption for
both automatic and manual works needed in whole
test case generation process are considered to
calculate the automation level of proposed method.
For instance, in the random walk step of RTCGW the
first state of DOMs is initialized manually by entering
username and password for TUDUList problem. In
this case, an average time of 1 minute is considered as
a manual effort. Automation effort is then calculated
by subtracting Manual efforts from the total time of
test case generation process.

3) Coverage: In this research client-side code
coverage is taken into consideration as many other
researches [25, 25].

4-4- Methods to be compared with
 AUTUSA: the method is proposed by Ali Mesbah

in 2011 [12], and is based on a graph model of
web application. It uses a tool called CrawlAjax to
generate state graph from client-side code. Test
cases are generated using the generated graph.
Due to its novelty and model-based nature of this
approach, it can be an appropriate candidate to be
compared with the proposed method in current
research.

 US-CR: This is also a method based on graph
model of web application [26]. Generally
speaking, it generates test cases in three phases: 1)
collecting a set of execution traces, 2) test case
generation and 3) test case reduction. To collect
execution traces it uses two methods consist of
crawler (CR) and user session-based (US). Finally
it uses a composition of two methods (CR+US)
and compares the obtained results. Due to its
complete results and model-based nature, it is also
a suitable approach to be compared with the
proposed method.

4-5- Running steps
 First Experiment: Test case generation for

TUDUList web application

First step: random walk on software: in this step the
number of runs is set to 30 runs.

Second step: PAFuNN training and generating fuzzy
rule set: the result of this step is illustrated in figure 7
and table 6.

Fig. 7 PAFuNN predicted and real values during Training phase on

input-output vectors obtained from random walk on TUDUList

TABLE 6- THE RESULTS OF TRAINING PAFUNN ON DATA

FROM RANDOM WALK ON TUDULIST

57 Rule nodes
1 Epochs

3.2 Training time (CPUTime)
5.8 Root Mean Square Error

Third step: Test Case Generation: In this step test
cases are initialized in a semi-random way. The result
is 100 test suites with a maximum of 30 test cases in
each test suite. Next the test suites are optimized
using mentioned algorithms. The test suite with
maximum fitness value is sent to next step.

Forth step: evaluations: In this part the results of
applying generated test suite on TUDU problem is
analyzed. First of all the results of executing
optimization algorithm to obtain best test suite is
illustrated in table 7 and figure 8. Then the results of
applying RTCGW method when different
optimization algorithms are used are shown in table 8
and figure 9. The number of test cases in a test suite is
set to 30.

TABLE 7- FITNESS AND AVERAGE TIME RESULTED FROM

USING DIFFERENT OPTIMIZATION ALGORITHMS

Algorithm

Statistics (fitness) Avg. (time (sec))

GA
Min = 42

Max = 55.2
Avg. = 48

11

MA1
Min = 45

Max = 61.12
Avg. = 52.06

44.59

MA2
Min = 46
Max = 54
Avg. = 47

65

(GA+SA)1
Min = 47
Max = 51

Avg. = 49.04
53.75

(GA+SA)2
Min = 47

Max = 61.12
Avg. = 52.28

134.5

SA
Min = 32

Max = 50.16
Avg. = 32

7

HC
Min = 32

Max = 32.94
Avg. = 32

7

40 Volume 6- Number 2- Spring 201436

Fig. 8 Fitness and average time resulted from using different
optimization algorithms

As it is obvious in figure 8, maximum fitness value is
related to GA+SA with second policy for utilization
of both algorithms features. While genetic algorithm
is going to obtain best solutions, simulated annealing
tries some bad solution to escape from local optimum.
The minimum value is for hill climbing as a local
search algorithm and it seems that it returns a local
optimum as the final solution. Secondly, the Memetic
algorithm could receive to a high fitness because of
using a local optimization method beside a global one
and successfully escape from local optimum. Time
spent for GA+SA with second policy has the highest
value, since in each generation during genetic
evolution simulated annealing is called for two times
(i.e. for two chromosomes). This time is less for first
policy of composing genetic with simulated annealing
because of one call for simulated annealing in each
generation for this method. On the other hand, time
spent for hill climbing has the minimum level of
value and it is because of its simplicity.

TABLE 8- THE RESULTS OF APPLYING RTCGW METHOD
WHEN DIFFERENT OPTIMIZATION ALGORITHMS ARE

USED

C
ode

C
overage

A
utom

ation
level

Perform
ance

#test cases

A
lgorithm

0.77 0.97 158.79 30 GA
0.78 0.97 169.80 30 MA1
0.78 0.97 166.38 30 MA2
0.77 0.97 148.22 30 (GA+

SA)1
0.80 0.97 180.79 30 (GA+

SA)2
0.76 0.97 157.90 30 HC
0.76 0.97 152.68 30 SA

Fig. 9 The results of applying RTCGW method when different

optimization algorithms are used

Clearly the results show that the more is the fitness of
algorithm, the better are other evaluation criteria and
this illustrates the correctness of fitness function
selected in this study. While (GA+SA)2 leads to a test
suite with the highest coverage and highest
performance on TUDUList web application, hill
climbing has the lowest results and it is exactly for the
reasons described in previous section. The same
analyze is also correct for Memetic algorithm with the
second highest value. Due to the fact that the highest
level of performance and code coverage is related to
GA+SA with second policy, this algorithm is used as
optimization method for test suites and the results are
compared with US, CR and US+CR methods (table 9
and figure 10).

TABLE 9- COMPARE PROPOSED METHOD WITH CR, US
AND CR+US

C
ode

C
overage

A

utom
ation

level

Perform

ance

#test case

M

ethod

0.8 46/(46+1
40+(46+
29)+65.

79
30 RTCG

W

0.33 15/(15+20)
19+

81+6.01
5

21 US

0.40 15/(15+20 14+42+
6.015 203 CR

0.58 15/(15+20 19+81+
6.015 224 US+CR

Fig. 10 Comparison between proposed method and US, CR,
US+CR based on performance, code coverage and automation level

According to results, it’s obvious that RTCGW has a
better performance in comparison with others while
having less number of test cases. Moreover, the level
of code coverage is higher than other methods. The
manual effort required for this method is the lowest
among other methods because its automation level is
the most. The three other methods have the same level
of automation for using same strategies in reducing
manual efforts. Minimum level of performance is for

0

50

100

150

G
A

M
A1

M
A2

(G
A+

SA
)1

(G
A+

SA
)2 SA H
C

Time (sec)

0
10
20
30
40
50
60

G
A

M
A1

M
A2

(G
A+

SA
)1

(G
A+

SA
)2 SA H
C

Fitness

0.74
0.75
0.76
0.77
0.78
0.79
0.8
0.81

G
A

M
A

1 M
A

2
)

G
A+

SA
)

1
)

G
A+

SA
)

2
SA H
C

Code Coverage

0

50

100

150

200

G
A

M
A

1 M
A

2
)

G
A+

SA
)

1
)

G
A+

SA
)

2
SA H
C

Performance

0

50

100

150

200

RT
CG

W U
S

CR
U
S+
CR

Performance

0

50

100

150

200

250

#test cases

0

0.2

0.4

0.6

0.8

1

RT
CG

W U
S

CR
U
S+
CR

Code Coverage

0
0.2
0.4
0.6
0.8
1

1.2

Automation
level

40Volume 6- Number 2- Spring 2014 37

CR and lowest code coverage is for US. The proposed
method not only improves all of criteria but also made
a tradeoff between them.

 Second Experiment: Automatic test case

generation for “Blind Text Generator” software:
This experiment is consisting of some steps to
achieve results then a comparison with ATUSA
method.

First Step: Random Software Navigation: This step
consists of crawling on software states for preparing
Input-Output vectors for learning PAFUNN network
is necessary. In this experiment the number of runs is
set to 30 runs.

Second Step: learning PAFUNN network and
generating fuzzy roles set: Fuzzy network are learned
with previous Input-Output data vectors in this step
and experiments results are illustrated in Figure 11.
Table 10 shows root mean square error, numbers of
nods and CPU usage time.

Figure 11 – Evolution and learning process of PAFUNN network
on randomly navigated “Blind Text Generator” results data.

 TABLE 10 – RESULTS OF LEARNING PAFUNN NETWORK
ON RANDOMLY NAVIGATED “BLIND TEXT GENERATOR”

DATA.

67 Rule nodes
1 Epochs

5.3 Training time (CPU-time)
3.5 RMSE

Third Step: Test Case Generation: Two step of
initialing and optimizing data set made test case. a.
initialing Test Sets: This step lead to initialing 100
results with a maximum of 30 test cases. b.
Optimizing Test Sets: to achieve this goal used
optimization Algorithms which mentioned in previous
on data sets from initialing lead to a test sets with
maximum fitness sent to next level to be analyzed.

Forth Step: Analyzing Data: This step will analyze
resulted data from proposed method on “Blind Text
Generator” as a case study. At first, results of
different considered optimizing algorithms execution
on TS Sets with fitness of each algorithm in 4
executions is illustrated in Table 11 and Figure
12.Then the results of applying RTCGW method
when different optimization algorithms are used are

shown in table 8 and figure 9. The number of test
cases in a test suite is set to 30.

TABLE 11 – FITNESS VALUE AND CONSUMED TIME FOR
EACH OPTIMIZING ALGORITHMS TEST CASE SETS

Algorithm Statistics (fitness) Avg. (time
(sec))

GA
Min = 81.4
Max = 94.5
Avg. = 89.3

10

MA1
Min = 83.4
Max = 100
Avg. = 93.5

45

MA2
Min = 44

Max = 100
Avg. = 84.75

70

(GA+SA)1
Min = 57

Max = 100
Avg. =77

60

(GA+SA)2
Min = 88

Max = 100
Avg. = 97

130

SA
Min = 66
Max = 67

Avg. = 66.6
7

HC
Min = 17
Max = 69

Avg. = 51.74
6

Fig. 12 Fitness value and average time of different

According to figure 12, maximum fitness value is
related to GA+SA with second policy for utilization
of both algorithms features. While genetic algorithm
is going to obtain best solutions, simulated annealing
tries some bad solution to escape from local optimum.
The minimum value is for hill climbing as a local
search algorithm and it seems that it returns a local
optimum as the final solution. Secondly, the Memetic
algorithm could receive to a high fitness because of
using a local optimization method beside a global one
and successfully escape from local optimum. Time
spent for GA+SA with second policy has the highest
value, since in each generation during genetic
evolution simulated annealing is called for two times
(i.e. for two chromosomes). This time is less for first
policy of composing genetic with simulated annealing
because of one call for simulated annealing in each
generation for this method. On the other hand, time
spent for hill climbing has the minimum level of
value and it is because of its simplicity.

0
20
40
60
80
100
120
140

G
A

M
A

1 M
A

2
)

G
A+

SA
)

1
)

G
A+

SA
)

2
SA H
C

Time (sec(

0
20
40
60
80
100
120

G
A

M
A

1 M
A

2
)

G
A+

SA
)

1
)

G
A+

SA
)

2
SA H
C

Fitness

40 Volume 6- Number 2- Spring 201438

TABLE 12- THE RESULTS OF APPLYING RTCGW
METHOD WHEN DIFFERENT OPTIMIZATION

ALGORITHMS ARE USED

C
ode C

overage

A
utom

ation
level (m

in)

Perform
ance

#test cases

A
lgorithm

0.76 0.97 171.3 30 GA
0.78 0.97 176.84 30 MA1
0.78 0.97 174 30 MA2
0.75 0.97 163.9 30 (GA+S

A)1
0.80 0.97 183.60 30 (GA+S

A)2
0.76 0.97 165.1 30 HC
0.76 0.97 170.27 30 SA

Fig. 13 The results of applying RTCGW method when different
optimization algorithms are used

Clearly the results show that the more is the fitness of
algorithm, the better are other evaluation criteria and
this illustrates the correctness of fitness function
selected in this study. While (GA+SA)2 leads to a test
suite with the highest coverage and highest
performance on Blind Text Generator web
application, hill climbing has the lowest results and it
is exactly for the reasons described in previous
section. The same analyze is also correct for Memetic
algorithm with the second highest value. Due to the
fact that the highest level of performance and code
coverage is related to GA+SA with second policy,
this algorithm is used as optimization method for test
suites and the results are compared with ATUSA
(table 13 and figure 14).

TABLE 13- COMPARING PROPOSED METHOD WITH
ATUSA

C
ode

C
overage

A
utom

ation
level

Perform
ance

#test cases

M
ethod

0.8 0.97 183.60 30 RTC
GW

0.75 0.17 151.282 32 ATU
SA

Fig. 14- Comparing proposed method with ATUSA

As the results show, the proposed RTCGW has a
higher level of performance than ATUSA although
having less number of test cases. The code coverage
is also more than ATUSA. Automation level is higher
and it leads to a lower level of manual effort needed
for this method. Again the evaluations illustrate a
tradeoff between all criteria. Using a complete model
of web application in RTCGW better results obtained
in comparison with ATUSA that uses a graph-based
model which is generated by some incomplete
execution traces. It means that model which describes
web application has a deep impact on test cases
generated. In other words, due to the fact that the
model proposed in RTCGW is a kind of infinite
model with the capability of predicting all the
application behaviors, it results to test cases with high
coverage of software.

V. CONCLUSION
This study tries to overcome some existing challenges
in test case generation approaches for modern web
applications. Due to the requirement of this research
to a method for extracting an overall model which
represents all aspects of software behaviors, a novel
fuzzy neural network is proposed to extract a model
based on fuzzy rule set and solve the problem of
incomplete models of previous methods. The model is
then used to generate test cases for web applications.
Moreover, generated test cases are optimized using an
algorithm composed of Genetic and Simulated
annealing algorithms to overcome state explosion
problem. Two benchmark web applications are tested
using generated test suite and the results are compared
with two well-known approaches in this area, which
all shows the performance, high coverage and high
level of automation comparing with other methods.

0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.8
0.81

Code Coverage

150
155
160
165
170
175
180
185
190

G
A

M
A

1 M
A

2
)

G
A+

SA
)

1
)

G
A+

SA
)

2
SA H
C

Performance

0

50

100

150

200

Performance

29
29.5
30

30.5
31

31.5
32

32.5

#test cases

0.72
0.74
0.76
0.78
0.8
0.82

Code Coverage

0

0.5

1

1.5

Automation
level

40Volume 6- Number 2- Spring 2014 39

ACKNOWLEDGMENT
This work is supported by Research institute for

ICT (ITRC) under Grant T/500/19236. The authors are
grateful to anonymous referees of this paper for their
constructive comments.

REFERENCES

[1] Keyvanpour M. R., Homayouni H., Shirazee H.

Automatic Software Test Case Generation. Journal of
Software Engineering 2011; 5(3), 91-101.

[2] Keyvanpour M. R., Homayouni H., Shirazee H.
Automatic Software Test Case Generation: An
Analytical Classification Framework. International
Journal of Software Engineering and its Applications
2012; 6(4).

[3] Kasabov N. Foundations of Neural Networks, Fuzzy
Systems and Knowledge, MIT Press 1996.

[4] Mesbah A. Applications, Analysis and Testing of
Ajax-based Single-page Web, Karaj: TuDelft, 2009.

[5] Amalfitano D. Reverse Engineering and Testing of
Rich Internet Applications. Ph.D Thesis, 2011.

[6] Marchetto A., Tonella P., Ricca F., State-Based
Testing of Ajax Web Applications. in International
Conference on Software Testing, Verification, and
Validation 2008; Lillehammer.

[7] Turner D., Park M., Kim J., Chae J. An Automated
Test Code Generation Method for Web Applications
using Activity Oriented Approach. in 23rd IEEE/ACM
International Conference on Automated Software
Engineering 2008.

[8] Mesbah A., Deursen A. v., Roest D. Invariant-Based
Automatic Testing of Modern Web Applications.
Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical
Engineering,Mathematics and Computer Science,
Delft University of Technology 2011.

[9] Marchetto A., Ricca F., Tonella P. A case study-based
comparison of web testing techniques applied to
AJAX web applications. Int J Softw Tools Technol
Transfer 2008; 10 (6), 477–492.

[10] Keyvanpour M. R., Homayouni H., Shirazee H. A
Classification Framework for Automatic Test Case
Generation Techniques for web applications.
International Journal of Information Processing and
Management(IJIPM) 2013; 4 (3), 26-39.

[11] Mesbah A., Deursen A. V., Lenselink S. Crawling
AJAX-Based Web Applications through Dynamic
Analysis of User Interface State Changes, ACM Trans.
Web 6, 1, Article 3, 2012; DOI =
10.1145/2109205.2109208
http://doi.acm.org/10.1145/2109205.2109208.

[12] Mesbah A., Deursen A. Van, Roest D. Invariant-Based
Automatic Testing of Modern Web Applications.
IEEE Transactions on Software Engineering 2012; 38
(1), 35-53.

[13] Dallmeier V., Burger M., Orth T., and Zeller A.
WebMate: Generating Test Cases for Web 2.0,
Software Quality. Increasing Value in Software and
Systems Development. Lecture Notes in Business
Information Processing, 2013; 133, 55-69.

[14] Babu M. R., Vasundra S. Enabling automatic testing
of Modern Web Applications using Testing Plug-ins,
International Journal of Computer Science &
Engineering Technology, 2013; 4 (9), 1258-1262.

[15] Marchetto A., Tonella P. Using search-based
algorithms for Ajax event sequence generation during
testing. EmpirSoftwareEng 2011; 16 (1), 103–140.

[16] Mesbah A. Analysis and Testing of Ajax-based
Single-page Web Applications. PhD Thesis, Faculty of
Delf University, 2009.

[17] Kasabov N. Evolving Fuzzy Neural Networks for
Supervised/ Unsupervised On-line, Knowledge-based
Learning. IEEE Transactions of Systems, Man and
Cybernetic 2001; 31 (6).

[18] Beigy H., Meybodi M. R., Menhaj M. B. Utilization of
fixed structure learning automata for adaptation of
learning rate in backpropagation algorithm. Pakistan
Journal of applied sciences 2002; 2 (4).

[19] Jeevarathinam R., Thanamani A. Test Case Generation
using Mutation Operators and Fault Classification.
International Journal of Computer Science and
Information Security, IJCSIS 2010; 7 (1), 190-195.

[20] Tracey N., Clark J., Mandar K., McDermid J.
Automated Test-data Generation for Eception
Conditions. Journal Software-Practice & Experience
2000; 30 (1).

[21] Prasanna M., Chandran K. R. Automatic Test Case
Generation for UML Object Diagrams using Genetic
Algorithm. Int. J. Advance. Soft Comput. App 2009; 1
(1).

[22] Dolby J., Artzi S., Jensen S. H., Moller A., Tip F. A
framework for automated testing of javascript web
applications. in International Conference on Software
Engineering - ICSE, 2011.

[23] Saxena P., Akhawe D., Hanna S., Mao F., McCamant
S., Song D. A Symbolic Execution Framework for
JavaScript. in Proceedings of the 2010 IEEE
Symposium on Security and Privacy, Washaington,
2010.

[24] Li J., Weiss D., Yee H. Code-coverage guided
prioritized test generation. Information and Software
Technology 2006; 48 (12), 1187-1198.

[25] Michael C., Mcgraw G., Schatz M. Generating
Software Test Data by Evolution. IEEE Transactions
on Software Engineering 2001; 27 (12), 1085-1110.

[26] Amalfitano D. Reverse Engineering and Testing of
Rich Internet Applications. PhD. Thesis University of
Napoli Federico, 2011.

40 Volume 6- Number 2- Spring 201440

MohammadReza Keyvanpour is an
Assistant Professor at Alzahra
University, Tehran, Iran. He received his
B.Sc. degree in Software Engineering
from Iran University of Science &
Technology, Tehran, Iran. He received
his M.Sc. and Ph.D. degrees in Software
Engineering from Tarbiat Modares

University, Tehran, Iran. His research interests include
Software Engineering, Machine Learning and Multimedia

Hajar Homayouni received her B.Sc.
degree in Software Engineering from
University Of Kashan, Isfahan, Iran. She
received her M.Sc. degree in Artificial
Intelligence at Alzahra University,
Tehran, Iran. Her research interests
include Software Testing and Machine

Learning.

